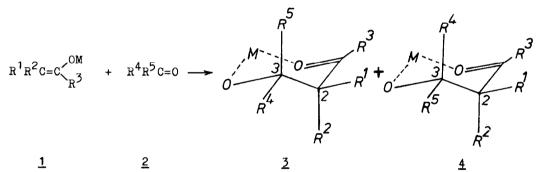
Tetrahedron Letters No. 52, pp 4651 - 4654, 1977. Pergamon Press. Printed in Great Britain.


STEREOSELECTIVE SYNTHESIS OF THREO-3-HYDROXYCARBOXYLIC ACIDS. STEREO-CHEMISTRY OF AN ALDOLTYPE ADDITION UNDER KINETIC AND THERMODYNAMIC CONTROL.

Johann Mulzer*, Johann Segner and Gisela Brüntrup

Institut für Organische Chemie der Universität, Karlstrasse 23, D 8000 München 2.

(Received in UK 28 October 1977; accepted for publication 3 November 1977)

The addition of preformed enclates <u>1</u> to carbonyl compounds <u>2</u> results in the formation of metal chelates, which, having stereocenters at C-2 and C-3, are generally formed as mixtures of the <u>threo-</u> and erythro-isomers 3 and 4^1 .

<u>1</u> :	$R^{1}, R^{2}, R^{3}, R^{4}, R^{5} = H, alkyl, aryl. M = Mg_{1/2}, Zn_{1/2}, Li, Na, K.$
<u>II</u> :	$\mathbb{R}^1, \mathbb{R}^2, \mathbb{R}^4, \mathbb{R}^5 = \mathbb{H}, alkyl, aryl. \mathbb{R}^3 = Oalkyl. \mathbb{M} = \mathbb{Zn}_{1/2}.$
	R^1, R^4 = alkyl, aryl. $R^2 = R^5 = H$. $R^3 = OLi$. M = Li.

For compounds of type \underline{I} it has been shown by different research groups that the ratio of $\underline{3}:\underline{4}$ largely depends on the substituents, metal ions and reaction conditions². Type \underline{II} corresponds to the familiar Reformatsky reaction³. In connection with our work on the chemistry of 3-hydroxycarboxylic acids⁴ we studied some additions of type \underline{III} . In this case the enclates <u>1</u> are carboxylate dianions which are readily prepared by a twofold deprotonation of the corresponding carboxylic acids <u>5</u> with lithium diisopropylamide (LDA)⁵. Our objective was to see how the ratio of $\underline{3}:\underline{4}$ changed for various R¹ and R⁴ if \underline{III} was run under conditions of clearly defined kinetic or thermodynamic control.

<u>Experimental.</u> 0.06 moles of 5 in 80 ml THF were converted into <u>1</u> with 0.12 moles of LDA (generated in situ from the amine and n-butyllithium) in 120 ml THF/hexane (v/v 1:2) at -50° . After having stirred the mixture at 25° for 1 hr and the solvents then removed at 1 torr, the residue was dissolved in

80 ml THF, cooled to -50° and treated with 0.06 moles of <u>2</u>. Then conditions <u>A</u> or <u>B</u> were applied alternatively. <u>A</u>: The mixture was stirred at -50° for 10 min. <u>B</u>: The mixture was stirred at 25° for 3 days. In each case the resulting mixtures of <u>3</u> and <u>4</u> were hydrolyzed to the corresponding hydroxyacids <u>6</u> (<u>threo</u>) and <u>7</u> (<u>erythro</u>). By independent control experiments we excluded any change of configuration at C-2 and C-3 during the conversion of <u>3/4</u> into 6/7.

Results and Mechanistic Interpretation. The stereochemical results obtained under conditions A and B are summarized in Table 1. It may be safely assumed that A leads to kinetically controlled product mixtures for all systems. As 1 undoubtedly is a highly reactive and hence little selective carbanion, the ratios of 3:4 may be expected to differ relatively little even if the sizes of R¹ and R⁴ are varied over a wide range. Considering the results of condition B the systems in Table 1 fall into two groups 1 and 2. The systems in group 1 remain under kinetic control; so nearly the same ratios of 3:4 are observed as for condition \underline{A} . The systems in group 2, however, now react reversibly and, therefore, are thermodynamically controlled: the formation of the more stable chelate 3 with equatorial substituents only is favored over 4, which has to cope with an axial R^1 or R^4 . The reason why the activation barrier of the retrograde addition is much lower for the systems in group 2 than for those in group 1 may be attributed to the following two substituent effects: <u>a</u>. The energy of <u>1</u> is lowered by additional conjugation (R^{1} = $C_{6}H_{5}$, systems h-q, Fig. 1a). <u>b</u>. <u>3</u> and <u>4</u> are destabilized by the steric congestion of bulky R¹ and R⁴ (systems e,f,g,n, Fig. 1b). A cooperation of both effects accelerates equilibration substantially; so the equilibrium composition is reached at 25° after 6 hrs for system <u>n</u> (effect <u>a+b</u>), and after 72 hrs for system g (effect b only) !

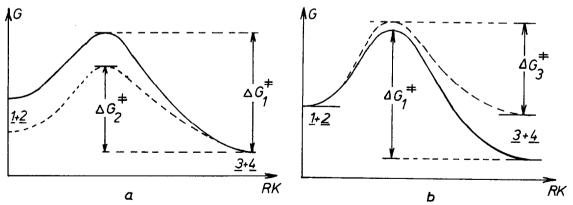


Fig. 1. Energy profiles of <u>III</u> for systems of group 1 (solid curves) and of group 2 (dashed curves) illustrating effects <u>a</u> and <u>b</u>. For simplicity it has been assumed that there is no energy difference between <u>3</u> and <u>4</u> of one and the same system.

<u>Table 1</u> . Ratios	of 3:4	and total	yields	under	conditions	Α	and	в.	

	: <u>7¹⁾ (= <u>3</u>:<u>4</u>) yields of <u>6+7</u> ditions <u>B</u></u>		R ⁴	R ¹	System
	1.0/68	1.0/70	с(сн ₃) ₃	сн _з	a
group	1.2/75	1.2/75	^с 6 ^н 5	CH ₃	b
1	1.2/75	1.1/73		C ₂ H ₅	c
	1.4/73	1.2/80	n	CH(CH ₃) ₂	đ
	9.0/75 ²⁾	3.8/78	сн(сн ₃) ₂	с(сн ₃) ₃	e
	49.0/83 ²⁾	4.0/85	с(сн ₃) ₃	88	f
	7.3/70	1.5/73	^с 6 ^н 5	11	g
	11.5/80	2.5/88	"	^с 6 ^н 5	h
	12.0/78	2.7/85	1-naphthyl	11	i
group	10.5/68	2.3/75	2-thienyl	11	j
2	11.0/60	2.4/68	2-furyl	n	k
	11.0/75	2.4/88	с ₆ н ₅ сн=сн	Ħ	1
	11.5/85	-	3-01-06 ^H 4	87	m
	49.0/85	1.9/95	с(сн ₃)3	n	n
	4.0/72	1.9/83	CH(CH ₃) ₂	11	o
	1.8/60	1.4/70	с ₂ н ₅	11	р
	1.8/50	1.4/65	CH3	**	q

1) The assignments of <u>threo</u>- and <u>erythro</u>-configurations are well established and will be published in due course. For the determination of the ratios of <u>6:7</u> the ¹H-NMR-signals of the carbinol protons have been used.

2) Equilibrium was reached at 45° after 3 days.

Additional evidence for the reversibility of the group-2-systems was gained by the following experiments. <u>1</u>. <u>6n</u> was converted into <u>3n</u> with 2 equivalents of LDA. Then an excess of 3-chlorobenzaldehyde was added whereupon <u>3m</u> and <u>4m</u> were formed in a ratio of 92:8 (total yield 85%) after 2 days at 25°. <u>2</u>. Analogously, <u>6h,6n,6p</u> and <u>6q</u> were transformed into <u>3h,3n,3p</u> and <u>3q</u> and kept at 25° for 3 days; phenylacetate could be isolated from the reactions in yields up to 10%. <u>3</u>. Alternatively, a 60:40-mixture of <u>6g:7g</u> was treated with 2 equivalents of LDA; after 3 days at 25° the ratio of <u>6g:7g</u> had changed to 9:1. Repetition of these experiments with systems of group 1 failed. <u>Conclusion</u>. Aldol additions of type <u>I</u> are generally regarded as <u>reversible</u>², whereas type-<u>II</u>-additions have been demonstrated to be <u>irreversible</u>³, at least for R^5 = H. In contrast to these results we have shown that additions of type <u>III</u> may proceed both <u>reversibly</u> and <u>irreversibly</u>, depending on the nature of the substituents R^1 and R^4 .

<u>Preparative Utility.</u> All the <u>threo</u>-acids listed in Table 1 have been obtained in practically pure form, either by choosing condition <u>B</u> or by crystallizing the <u>threo-erythro</u>-mixtures from ether/pentane or from chloroform/pentane. With appropriate reagents these <u>threo</u>-acids can be converted into <u>threo</u>esters (which, for the group-2-systems, constitutes a highly stereoselective version of the Reformatsky reaction), <u>cis</u>-olefins and <u>trans</u>-B-lactones stereospecifically⁶.

References.

- H.O. House, Modern Synthetic Reactions, 2nd ed., W.A. Benjamin Inc., Menlo Park, Calif., 1972, p. 671-682.
- 2) W.A. Kleschick, C.T. Buse and C.H. Heathcock, <u>J.Am.Chem.Soc.</u>, <u>99</u>, 247 (1977); H.O. House, D.S. Crumrine, A.Y. Teranishi and H.D. Olmstead, <u>ibid.</u>, <u>95</u>, 3310(1973); J.-E. Dubois and J.-F. Fort, <u>Tetrahedron</u>, <u>28</u>, 1653, 1665(1972).
- F. Gaudemar-Bardone and M. Gaudemar, <u>Bull.Soc.Chim.France</u>, <u>1969</u>, 2088;
 Y. Beziat and M. Mousseron-Canet, <u>ibid.</u>, <u>1968</u>, 1187; J. Canceill, J. Gabard and J. Jacques, <u>ibid.</u>, <u>1968</u>, 231.
- J. Mulzer and G. Brüntrup, <u>Angew.Chem.</u>, <u>89</u>, 265(1977); <u>Internat.Edit.</u>, <u>16</u>, 255(1977).
- 5) P.L. Creger, <u>J.Am.Chem.Soc.</u>, <u>89</u>, 2500(1967); G.W. Moersch and A.R. Burkett, <u>J.Org.Chem.</u>, <u>36</u>, 1149(1971); W. Adam, J. Baeza and J.-C. Liu, <u>J.Am.Chem.Soc.</u>, <u>94</u>, 2000(1972); A.P. Krapcho and E.G. Jahngen Jr., <u>J.Org.</u> <u>Chem.</u>, <u>39</u>, 1650(1974).
- 6) Publications in preparation.